If it's not what You are looking for type in the equation solver your own equation and let us solve it.
117x^2-324=0
a = 117; b = 0; c = -324;
Δ = b2-4ac
Δ = 02-4·117·(-324)
Δ = 151632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{151632}=\sqrt{11664*13}=\sqrt{11664}*\sqrt{13}=108\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-108\sqrt{13}}{2*117}=\frac{0-108\sqrt{13}}{234} =-\frac{108\sqrt{13}}{234} =-\frac{6\sqrt{13}}{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+108\sqrt{13}}{2*117}=\frac{0+108\sqrt{13}}{234} =\frac{108\sqrt{13}}{234} =\frac{6\sqrt{13}}{13} $
| -14x=x-60 | | 3(y-5)-5y=13 | | -3(x-4)=-9(x-1) | | 2x^2/1x=20 | | 3z/10+9=-1z= | | x*0.16=50 | | 6x-11=-59 | | 1+4x+5x=10 | | 3(2x+4)=3x-9 | | 15y+8=20y= | | 7+3(1-x(1))=5-2(3-4(1)) | | -2r=2(r-2) | | 5x+20=10x+1 | | 4(12-2z)=3(2z+9) | | 2p^2-4p-48=0 | | 25w-12.75=114.25 | | 4x^2/2x-8=12 | | 25w+12.75=114.25 | | 4x^2/2x-8=20 | | 12.75w-25=114.25 | | H(2)=10x-9 | | 9m-(3+7m=) | | r/6=-5/2 | | 4(p-3)=12 | | H(-9)=10x-9 | | -7=r+(-12) | | m^2+23m-22=0 | | X+4y-22=0 | | 16n=11 | | 25=-x+7x+7 | | m^2-22+23m=0 | | 22+2a=37+6a |